Para
bem entender a soma de probabilidades, ajuda dividir a questão em duas regras:
a regra nº 1, para a soma de eventos mutuamente exclusivos e a regra nº 2, para
a soma de eventos não mutuamente exclusivos.
Eventos mutuamente exclusivos
Se dois eventos não podem ocorrer ao mesmo tempo, dizemos que são mutuamente exclusivos. A ocorrência de um desses eventos exclui (impede) a ocorrência do outro.
Eventos mutuamente exclusivos
Se dois eventos não podem ocorrer ao mesmo tempo, dizemos que são mutuamente exclusivos. A ocorrência de um desses eventos exclui (impede) a ocorrência do outro.
Exemplo
Quando você joga um dado, só pode ocorrer uma das faces. Então se a ocorreu a face “cinco”, ficou excluída a possibilidade de ter ocorrido qualquer outra face.
Quando você joga um dado, só pode ocorrer uma das faces. Então se a ocorreu a face “cinco”, ficou excluída a possibilidade de ter ocorrido qualquer outra face.
Regra
1 da soma (para eventos mutuamente exclusivos)
Se
A e B são eventos mutuamente
exclusivos, a probabilidade de ocorrer A
ou B é igual à soma das
probabilidades de ocorrer cada um deles. Escreve-se:
Exemplo
Quando
você joga um dado, só pode ocorrer uma das faces. Qual é a probabilidade de, em
um lançamento, ocorrer 1 ou 6? Usando a regra 1 da soma, você calcula a
probabilidade de ocorrer 1 e a probabilidade de ocorrer 6. Depois, soma essas
probabilidades.
Exemplo
Imagine
um pote de vidro com 11 bolinhas de diferentes cores: 3 azuis, 4 brancas, 2
vermelhas, 1 amarela, 1 verde. Qual é a probabilidade de, em uma só retirada,
ocorrer bola verde ou bola amarela? Usando a regra 1 da soma, você calcula a
probabilidade de ocorrer bola verde e a probabilidade de ocorrer bola amarela.
Depois, soma essas probabilidades.
Eventos não mutuamente
exclusivos
Dois
eventos A e B são não mutuamente
exclusivos se eles têm pelo menos um resultado em comum.
Exemplo
Quando você joga um dado, só pode ocorrer
uma das faces. Mas pense nos eventos: ocorrer “número ímpar” ou ocorrer “número
maior do que quatro”. Esses dois eventos têm um resultado em comum: é o número
cinco, que tanto pertence ao evento “número ímpar” como ao evento “número maior
do que quatro”.
Veja a figura: “números ímpares” estão
circundados por uma elipse azul e “números maiores do que quatro” por um
retângulo vermelho. Se você contar o número de resultados que correspondem ao
evento “número ímpar” e o número de resultados que correspondem ao evento
“número maior do que quatro”, terá contado 5 duas vezes.
Regra
2 da soma (para eventos não mutuamente exclusivos)
Se
A e B são dois eventos não mutuamente
exclusivos, há uma sobreposição, isto é, existe pelo menos um resultado de A
que também é resultado de B. Então a probabilidade de ocorrer A ou B
é dada pela probabilidade de A, mais
a probabilidade de B, menos a
probabilidade de A e B (contada duas vezes). Escreve-se:
Exemplo
Quando
você joga um dado, só pode ocorrer uma das faces. Qual é a probabilidade de, em
um lançamento, ocorrer “número ímpar” ou ocorrer “número maior do que quatro”?
Usando a regra 2 da soma, você calcula a probabilidade de ocorrer “número
ímpar”, a probabilidade de ocorrer “número maior do que quatro” e probabilidade
de ocorrer “número ímpar maior do que quatro”. Depois, aplica a regra 2:
Exemplo
Uma carta será retirada ao acaso de um baralho. Qual é a probabilidade de sair um rei ou uma carta de copas?
Como
um baralho tem 52 cartas, das quais quatro são reis e 13 são de copas, alguém
poderia pensar que a probabilidade de sair um rei ou uma carta de copas é dada
pela soma
Mas
esta resposta está errada porque o rei
de copas é tanto rei como copas. Então o rei de copas teria sido contado duas
vezes – como rei e como copas.
Para obter a probabilidade de sair uma sair
um rei ou uma carta de copas, some as probabilidades de sair rei e sair carta
de copas e subtraia a probabilidade de sair o rei de copas, contado duas
vezes:
Exercícios
1. É dado o conjunto de dados: A={1;
2; 3; 4; 5; 6; 7; 8; 9; 10}.
a) Qual é a probabilidade de, ao se tomar um número ao acaso desse conjunto
A de dados, o número ser um ímpar menor do que 4 ou um ímpar maior do que 8?
b) Qual é a probabilidade de, ao se tomar um número ao acaso desse conjunto A de dados, o número ser um ímpar ou múltiplo de 3?
b) Qual é a probabilidade de, ao se tomar um número ao acaso desse conjunto A de dados, o número ser um ímpar ou múltiplo de 3?
2. Qual é a probabilidade de, ao lançar um dado, sair número ímpar ou múltiplo de 3?
3. Jogam-se um dado e uma moeda. O jogador ganha se sair “cara” na moeda
ou “2” no dado. Qual é a probabilidade de o jogador ganhar arremessando juntos o
dado e a moeda?
Respostas:
1. a) 3/10.
1. b) 3/5.
2. 2/3
3. 7/12
2. 2/3
3. 7/12
Como se chegar a essas respostas?
1.a) São 10 eventos possíveis.São eventos de interesse:ímpares menores do que 4, isto é, 1 e 3 e maiores do que 8, ou seja, só o 9. Veja os eventos de interesse em vermelho:
1; 2; 3; 4; 5; 6; 7; 8; 9; 10.
Daí, a resposta 3/10.
1.b) São 10 eventos possíveis.São eventos de interesse:ímpares ou múltiplos de 3. São ímpares: 1; 3; 5; 7; 9. São múltiplos de 3: 3; 6; 9. Veja que os números 3 e 9 foram contados duas vezes, porque são tanto números ímpares como múltiplos de 3. Usando a regra 2 da soma:
2. São 6 eventos possíveis, dos quais 3 são números ímpares e 2 são múltiplos de 3, mas 3 é tanto ímpar como múltiplo de 3. Então, aplicando a regra 2 da soma:
Veja as respostas de interesse marcadas em vermelho, múltiplos de 3 e em azul, os ímpares.
3. Veja: tanto faz sair “cara” na moeda ou “2” no dado, o jogador ganha nos dois casos. A probabilidade de sair “cara” na moeda é
A probabilidade de sair “2” no dado é
No entanto, pode “sair cara” na moeda e “2” no dado em uma única jogada. A probabilidade desse evento é
Logo, para calcular a probabilidade de o jogador ganhar, use a regra 2 da soma. A probabilidade pedida é
Veja também a tabela e conte: são 12 eventos possíveis; 7 são de interesse. Logo, a probabilidade pedida é 7/12.
1.a) São 10 eventos possíveis.São eventos de interesse:ímpares menores do que 4, isto é, 1 e 3 e maiores do que 8, ou seja, só o 9. Veja os eventos de interesse em vermelho:
1; 2; 3; 4; 5; 6; 7; 8; 9; 10.
Daí, a resposta 3/10.
1.b) São 10 eventos possíveis.São eventos de interesse:ímpares ou múltiplos de 3. São ímpares: 1; 3; 5; 7; 9. São múltiplos de 3: 3; 6; 9. Veja que os números 3 e 9 foram contados duas vezes, porque são tanto números ímpares como múltiplos de 3. Usando a regra 2 da soma:
Veja as respostas de interesse marcadas em vermelho (ímpares) e circundadas por quadrado (múltiplos de 3):
2. São 6 eventos possíveis, dos quais 3 são números ímpares e 2 são múltiplos de 3, mas 3 é tanto ímpar como múltiplo de 3. Então, aplicando a regra 2 da soma:
Veja as respostas de interesse marcadas em vermelho, múltiplos de 3 e em azul, os ímpares.
3. Veja: tanto faz sair “cara” na moeda ou “2” no dado, o jogador ganha nos dois casos. A probabilidade de sair “cara” na moeda é
A probabilidade de sair “2” no dado é
No entanto, pode “sair cara” na moeda e “2” no dado em uma única jogada. A probabilidade desse evento é
Logo, para calcular a probabilidade de o jogador ganhar, use a regra 2 da soma. A probabilidade pedida é
Veja também a tabela e conte: são 12 eventos possíveis; 7 são de interesse. Logo, a probabilidade pedida é 7/12.
16 comments:
Que ótima explicação! Transformou em algo super simples de se entender. Utilizarei esses exemplos em aula. Obrigada
quando as bases são diferentes, vai mudar alguma coisa?
Ex:Um dado e uma moeda são lançados, qual a probabilidade de se obter uma coroa e um dois: Coroa:1/2 Dado:1/6. Tenho dúvidas sobre a base debaixo, haverá fatoração para igualar a base ou apenas vou somar?
Qual é a probabilidade de coroa na moeda e 2 no dado? Regra do e, ou seja, teorema da multiplicação: 1/2 x 1/6 = 1/12.
E como seria na regra do OU? Qual é a probabilidade de coroa na moeda OU 2 no dado?
hoje é meu primeiro dia neste blog, achei por acaso, e ja resolvi maior parte de duvidas de estatistica que tinha, adorei o blog e vou seguir.
De:Moçambique
(Qual é a probabilidade de coroa na moeda OU 6 no dado?)
todas as repostas que foram dadas a essa pergunta estão erradas!
porque:
igual o exemplo do rei ou copas...
deve subtrair a probabilidade de repetições...
logo 1/6 + 1/2 esta ERRADO, por favor professores da vida ensinem isso também...
O CERTO SERIA >>>>> 1/6 + 1/2 - 1/12
O 1/12 é a Probabilidade de repetições... sair cara e tambem sair 6
No fim se ainda existe alguém que ache que estou errado...
faca a prova real verificando todos os anagramas e também reflitam sobre a necessidade de uma subtração em alguns casos pois se assim não fosse... 1/2 + 1/2 = 100%
b) Qual é a probabilidade de, ao se tomar um número ao acaso, o número ser um ímpar ou múltiplo de 3?
a resposta correta não é 3/5.
a resposta é 4/6
3/5 = 0.6
4/6 = 0.666666667
explicação:
# dados
Probabilidade de se um número par >>> 1/2
P/ de múltiplo de 3 >>> 1/3
P/ de ser par E múltiplo de 3 >>> 1/3 * 1/2 = 1/6
Então de acordo com a própria explicação a respeito da exceção da regra do OU... deve subtrair o resultado as repetições... ou seja 1/6
Então no final fica:
1/2 + 1/3 - 1/6
=
3/6 + 2/6 - 1/6
=
4/6
Obrigada, o cumprimento ajuda.
Obrigada, Jônatas, pela correção de minha resposta à pergunta:
"Vamos refazer a pergunta, para facilitar a discussão. Jogam-se um dado e uma moeda. O jogador ganha se sair “cara” na moeda ou “2” no dado. Qual é a probabilidade de o jogador ganhar em um só arremesso?"Refiz no texto, por facilidade do uso de sinais gráficos.
Quanto à questão b que segue, ainda acho que estou certa, mas não está clara a pergunta:
É dado o conjunto de dados: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10.
a) Qual é a probabilidade de, ao se tomar um número ao acaso, o número ser um ímpar menor do que 4 ou um ímpar maior do que 8?
b) Qual é a probabilidade de, ao se tomar um número ao acaso, o número ser um ímpar ou múltiplo de 3? Refiz esta pergunta e coloquei seu problema no texto. OBRIGADA.
Minhas desculpas ao ProJovem Núcleo Magalhães Drummond que em 22/8/18 me dirigiu uma pergunta que respondi errado. Só agora, 10/4/19 fui corrigida, por Jônatas Pereira de Campos. Coloquei a resposta dele no texto, pela facilidade de sinais gráficos. E quero deixar claro: toda correção é bem vinda. Nosso ofício é ensinar, ensinar certo.
OK👍
Ficou muito bom agora e fácil de entender!
Ótimo trabalho Sonia Vieira!
acredito que nesse caso faz o mmc
Seu blog é excelente. Parabéns.
Post a Comment