Saturday, August 29, 2015

Teorema de Bayes e teste diagnóstico na Genética


Antes de ver o exemplo, convém ler, neste mesmo blog, as postagens:
            Teorema de Bayes 
            Testes diagnósticos: sensibilidade e especificidade.

Considere a porfiria, uma doença autossômica dominante. Toda pessoa afetada tem um genitor afetado e tem 50% de chance de transmitir o gene (e consequentemente a doença) para os filhos. Veja o heredograma, em que verde indica pessoa sem a doença e vermelho indica pessoa afetada.
 
Existe um teste para o diagnóstico precoce da doença, que tem sensibilidade  0,82 e especificidade é 0,963.
Situação 1: Uma pessoa teve resultado positivo no teste para a porfiria. Qual é a probabilidade de essa pessoa ter a doença?
Sem qualquer informação adicional, a resposta é óbvia: se a sensibilidade do teste (probabilidade de verdadeiros positivos no total de doentes) é 0,82, a probabilidade de essa pessoa ter porfiria é 0,82 ou 82%.

Situação 2: A porfiria é uma doença rara, que ocorre na população com probabilidade 0,01%. Se uma pessoa tomada ao acaso da população obtiver resultado positivo no teste para a doença, qual é a probabilidade de ela ter a doença?
Como a sensibilidade do teste é 0,82 e a especificidade é 0,963, a probabilidade de a pessoa, que teve resultado positivo no teste diagnóstico ter a doença deve ser obtida pelo teorema de Bayes. Veja o diagrama de árvore. Observando o diagrama, fica mais fácil calcular a probabilidade de a pessoa ter porfiria, dado que o teste positivou.

Situação 3: A porfiria é uma doença autossômica dominante. É dada a informação adicional de que uma pessoa que fez o teste tem um irmão germano com porfiriaSe o resultado no teste foi positivo, qual é a probabilidade de essa pessoa ter a doença?

A probabilidade de um paciente que tem irmão com a doença ter porfiria se tiver resultado positivo no teste é obtida pelo teorema de Bayes. Observe o diagrama de árvore e calcule a probabilidade pedida.

Situação 4: Uma pessoa  não conhece seu histórico genético familiar (digamos foi adotada bebê), mas um médico experiente tem o palpite de que a  probabilidade de essa pessoa ter a porfíria é 30%. Se a pessoa positivar no teste, qual é a probabilidade de essa pessoa ter porfiria? 
A probabilidade é obtida aplicando o teorema de Bayes. Veja o diagrama de árvore e o cálculo abaixo.
Pense nisto: para a mesma pergunta – qual é a probabilidade de a pessoa ter a doença? – foram obtidas respostas  diferentes. Por quê?
O teorema de Bayes permite rever um valor calculado de probabilidade com base em informação anterior. Qual das respostas é a correta? Depende da situação:

v  Na 1ª situação, a probabilidade de a pessoa ter a doença foi obtida apenas pela sensibilidade do teste.
v  Na 2ª situação, a probabilidade foi obtida considerando a baixa prevalência na população, conhecida por grandes levantamentos (surveys) feitos anteriormente.
v  Na 3ª situação, a probabilidade a priori foi obtida considerando, em seu cálculo, conhecimento de genética e a história familiar do paciente.
v  Na 4ª situação, a probabilidade foi obtida levando em conta o palpite (educated guess) do médico, ou seja, a partir de intuição clínica.

                                   IMPORTANTE
O teorema de Bayes permite incorporar conhecimentos anteriores aos fatos observados: usamos um valor de probabilidade a priori (obtida antes de saber o resultado do teste) para mais bem estimar uma probabilidade a posteriori, obtida dos dados observados. 

       Este exemplo é de 
             Motulsky, H. Intuitive Biostatistics.Oxford universityPress. 
                 1995. P133-6.















Saturday, August 15, 2015

Teorema de Bayes

Antes de apresentar o teorema de Bayes, convém lembrar a definição de probabilidade condicional, para registrar a diferença entre probabilidade condicional e o teorema de Bayes.
                                    Definição
Probabilidade condicional de B dado A é a probabilidade de ocorrer o evento B sob a condição de o evento A ter ocorrido. Indica-se por P(B|A), que se lê “probabilidade de B dado A”.
É importante notar: A e B são dois eventos dependentes que ocorrem em sequência.  O evento A antecede o evento B.
                                       Exemplo
Uma urna contém cinco bolas diferentes apenas quanto à cor: duas são vermelhas, três são azuis. Retiram-se duas bolas da urna ao acaso, uma em seguida da outra, sem recolocar na urna a primeira bola retirada. Pergunta-se: Qual é a probabilidade de segunda bola  ser vermelha  sob a condição de primeira bola retirada ser a azul?

O diagrama de árvore ajuda entender o que pode acontecer quando se retiram duas bolas de uma urna, na situação descrita. Estão calculadas todas as probabilidades condicionais e assinalada em amarelo a probabilidade pedida.

A probabilidade de segunda bola  ser vermelha  sob a condição de primeira bola retirada ser a azul é dada pelo teorema da multiplicação de probabilidades, eventos dependentes:
       TEOREMA DE BAYES
 Os símbolos P(B ǀ A) e P(A ǀ B) podem ter aparência similar, mas há grande diferença no que eles representam. Por exemplo, faça A representar ter treinamento técnico e faça B representar execução de  um bom serviço. Veja:
   ·   P(ǀ A) = probabilidade de “bom serviço” dado “ter treinamento técnico”.
   ·  P(ǀ B) = probabilidade de “ter treinamento técnico” dado o “bom serviço”.
 Outro exemplo: faça A representar "bom aluno no colegial"  e faça B representar  "aprovado no vestibular". Veja:
  · P(ǀ A) = probabilidade de ter sido “ aprovado no vestibular” dado “ter sido bom aluno”.
   · P(ǀ B) = probabilidade de “ter sido bom aluno” dado que foi  “aprovado no vestibular”.
Muitos problemas envolvem um par de probabilidades condicionais. Vamos buscar a fórmula para obter P(A ǀ B). Para isso, veja a 2ª regra da multiplicação em postagem anterior (teorema da multiplicação de probabilidades ou a regra do e para eventos dependentes) e lembre-se de que A e B são dois eventos que ocorrem em sequência, A antecede B. Temos, pela "regra do e":
Donde:
Portanto:

Exemplo
Vamos voltar às bolas na urna, para entender que o teorema de Bayes responde pergunta diferente da que foi respondida pelo cálculo da probabilidade condicional.Uma urna contém cinco bolas diferentes apenas quanto à cor: duas são vermelhas, três são azuis. Retiram-se duas bolas da urna ao acaso, uma em seguida da outra, sem recolocar na urna a primeira bola retirada. Pergunta: qual é a probabilidade de a primeira bola retirada ser azul, sob a condição de a segunda bola retirada ter sido a vermelha?
Veja o diagrama de árvore: bola vermelha na segunda retirada acontece de duas maneiras, isto é, azul e vermelha ou vermelha e vermelha:
evento de interesse é sair bola azul na primeira retirada dado ter saído bola vermelha na segunda retirada, ou seja: 

 Então a probabilidade de a primeira bola retirada ser azul sob a condição de a segunda bola retirada ser vermelha é dada por:
                                            
Aplicamos o teorema de Bayes. Mas vamos formalizar.
Teorema de Bayes: Sejam A e B dois eventos dependentes que ocorrem em sequência, A antes de B. A probabilidade de ocorrer A sob a condição de ocorrer B é dada por:


Observe o esquema abaixo: está marcado o evento de interesse, que é a probabilidade de ocorrer A dado ter ocorrido B. Mas B pode ocorrer dduas maneiras: depois de A e depois de A-traço.


Lembrando: o teorema de Bayes é o “reverso” de probabilidade condicional:
   ·         A probabilidade condicional trata a probabilidade de ocorrer um evento B sob a condição de ocorrer seu antecedente A.
·         O teorema de Bayes trata a probabilidade de ocorrer o evento A sob a condição de ocorrer o evento B que sucede A.
Exemplo
Em uma cidade em que o teste do bafômetro é obrigatório, 25% dos motoristas têm o hábito de dirigir depois de beber. Quando testados, 99% dos motoristas que beberam positivam para álcool.  No entanto, 17% dos motoristas que não bebem também positivam no bafômetro.  Você é um agente da lei. Qual é a probabilidade de uma pessoa que positiva no bafômetro realmente ter feito uso de bebida alcoólica?
Os eventos “bebe” e “não bebe” serão indicados pelas letras BB e NB e o fato de positivar no bafômetro por + e - respectivamente. Veja o diagrama de árvore.



Exemplo
Você vai a uma corrida de cavalos. Dois cavalos estão no páreo: o Branco e o Negro. Branco venceu 5 das 12 vezes que correu com o Negro. E qual cavalo você apostaria? É razoável apostar no Negro porque, da informação que você tem, a probabilidade de o Branco ganhar é 5/12 e de o Negro ganhar é 7/12. Mas você recebe outra informação: chovia, em 3 das 5 corridas que Branco venceu e chovia, em 1 das 7 corridas que Negro venceu. Como está chovendo, você aposta em Branco. Qual a probabilidade de ele (e você!) ganhar? Veja o diagrama de árvore e ache a probabilidade pedida, que é ¾.

Notas: 1. Thomas Bayes (1702-1761) foi um pastor presbiteriano e matemático inglês, conhecido por ter formulado o caso especial do teorema de Bayes. 
         2. Estudar probabilidade pensando em dados, moedas, bolas em urnas é ótimo. Mas na prática não use esse artifício para resolver um  problema.